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C : Algorithm 

Machine LearningMeasures vector x
Algorithm answer

« y=C(x) » 
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Difficulties: within-class variations



Discrimination Process

Real Word          Data                  Features Decision

Sensor Modelisation AI

Signal
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Learning and Decision



Our goal is, given a training set, to learn a function 

so that ȿ(x) is a ñgoodò predictor for the 

corresponding value of y

When the target variable can take on only a small number of discrete values we call it a classification problem. 

the space of input values

Learning

y



Neuronal Network Approach

Soma Soma

Synapse

Synapse

Dendrites

Axon

Synapse

Dendrites

AxonA highly complex, non-linear 

and parallel information-

processing system

Neuronôs cell body (soma ) 

processes the incoming 

activations and converts them 

into output activations

Synapses: the junctions 

that allow signal 

transmission between the 

axons and the dendrites.

Learning Process



Mc Culloch et Pitts 1943

A non-linear activation function 
Threshold

Formal neuron

Input Weight Threshold

Activation

function

Output

Sum



Assuming, to be general, that the perceptron has p inputs, then the equation

in an p dimensional space with coordinates x1,x2éxd, defines a hyperplane as the switching surface between the 

two different classes of input. 

Linear decision rule

otherwise

Perceptron: decision rule



Cluster 1: yes or not

Cluster 2: yes or not

Cluster C: yes or not

Perceptron: for cluster >2 

Input

Output
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The target for x(t)

r : error signal

a: Learning rate

DW

Initialize weights at random

For each training pair/pattern (x, d)

- Compute output y

- Compute error, r=f(d ïy)

- Use the error to update weights as follows:

wnew = wold + a*r*x

Repeat until ñconvergenceò

Generate a training pair or pattern:

- an input x = [ x1 x2 é xn]

- a target output d (known/given)

A Cost Function to quantify this difference

t=1

x

Training the neural Network

W* such that E minimun

RMS costfunction



We use gradient descent to search for a good set of weights 

Initialize the initial position x0 at random

Repeat until convergence

Training the neural Network: Gradient descent

Errordefinedfor one training data samples

For each weight

A differentiable transfer/activation function is necessary for the gradient descent algorithm to work. 



On-line Training (or Sequential Training): update all the weights immediately after processing each training pattern 

Sum on training data samples

Batch Training: update the weights after all training patterns have been 

presented 
First definition of the error

t=1

t=1

Training Strategy

Epoch: the number of times the model is exposed to the training set

Batch_size: this is the number of training instances observed before the optimizer

performs a weight update



Neuron defines two regions in input space where it outputs 0 and 1.

The regions are separated by a hyperplane wTx = 0 

Multilayer neural network: why ?
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The propagation pass begins at the first hidden layer by presenting it with the 

input vector, and terminates at the output layer by computing the output signal 

for each output neuron 



Training Multilayer neural network: Backpropagation
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lg=256

f1=0.3

f2=0.1

x=randn(lg)

b=[1]

a=poly((0.8*(cos(2*pi*f1)+sin(2*pi*f1)*1j),0.8*(cos(2*pi*f1)-sin(2*pi*f1)*1j)))

y1=signal.lfilter(b,a,x) 

x=randn(lg)

b=[1]

a=poly((0.6*(cos(2*pi*f2)+sin(2*pi*f2)*1j),0.6*(cos(2*pi*f2)-sin(2*pi*f2)*1j)))

y2=signal.lfilter(b,a,x) 

Example

Features: Energy for differentintervalsin the frequencydomain

for k in range(0,Nbre_indivu*2):

spec= abs(fft(Data[k,:]))**2

for kk in range(0,8):

sslg=int(lg/(8*2))

Features[k,kk]= np.sum(spec[kk*sslg:(kk+1)*sslg])

DATA
2000

256

1 LABEL

Features
2000

8



from sklearn.model_selection import train_test_split

#split dataset into train and test data

X_train, X_test, Y_train, Y_test = train_test_split(Features,Label, test_size=0.2, random_state = 42,stratify = Label)

UnbiaisedEstimation of the error

Label=np.concatenate((np.zeros(1000),np.ones(1000)))



model = Sequential()

#***********************************

# Discriminateur couche 1+2

#***********************************

model.add(Dense(8, activation='tanh'))

model.add(Dense(1, activation='sigmoid'))

model.compile(loss='mse', optimizer='adam', metrics=['accuracy'])

history= model.fit(X_train, Y_train, epochs=30, batch_size=32, validation_split=0.2, verbose=1)

score = model.evaluate(X_test, Y_test, verbose=1)

score :  [0.0005113882361911237, 1.0]

Learning and Test



New Discrimination Process
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Learning and Decision

learning
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After filtering Original image

Convolution Mask

Features computation : Convolution product

h(-1,-1) h(0,-1) h(1,-1)

h(-1,0) h0,0) h(1,0)

h(-1,1) h(0,1) h(1,1)f(p+1,q+1)f(p,q+1)f(p-1,q+1)

f(p-1,q) f(p,q) f(p+1,q)
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Calculationof the featureswith learning

High-passfilter to improveresults

Deep-Learning

For eachblock (one layer); we have the followingsteps:
ÅConvolution product,
ÅActivation function,
ÅPoolingoperation,
ÅNormalisation.



Image

Convolution (5 kernels)

Activation

Pooling

Features

map

Relu

CNN

BackPropagation


